Table 1 Size of case series for case-control studies using an equal number of controls and for studies to test for transmission disequilibrium (TDT), by genotypic risk ratio, and allele frequency (power of 80% and alpha = 0.001, 2-sided)

Genotypic Risk Ratio	Frequency of disease allele (A)	Expected Odds Ratio (A vs no A)	Case-Control Study Population frequency of A (p2+2pq)	# cases neede Case-Control	
4	0.01	4.06	0.02	489	917
4	0.10	4.63	0.19	70	127
4	0.50	8.00	0.75	94	88
4	0.80	12.0	0.96	542	187
2	0.01	2.01	0.02	2612	5207
2	0.10	2.11	0.19	329	616
2	0.50	2.67	0.75	260	302
2	0.80	3.33	0.96	1138	566
1.5	0.01	1.50	0.02	8789	16960
1.5	0.10	1.54	0.19	1055	2152
1.5	0.50	1.75	0.75	685	848
1.5	0.80	2.00	0.96	2604	1483

In this case-control study, the frequency of the A allele is compared between the two groups. The expected proportion of A is the frequency of homozygotes and heterozygotes for A according to the Hardy-Weinberg equilibrium. The odds ratio for any A is a weighted average for the odds ratio associated with one A and that associated with two A alleles. The multiplicative effects of alleles may not be biologically the most correct model but the comparative analysis of TDT and case-control study design should not be affected.

Table 2

Advantages of Population-based Case-Control Studies For Assessing the Role of Genes in Complex Human Diseases

- 1. They are easier to conduct than family studies (for adult-onset diseases but not for diseases of infancy and childhood)
- 2. They have similar if not better statistical power in finding genes than TDT and linkage analysis
- 3. They can assess the magnitude of disease risks associated with specific alleles in the population while TDT does not provide direct estimates of risk
- 4. They can measure directly gene-gene and gene-environment interaction in quantifying disease risks
- 5. They can measure the fraction of disease attributable to specific genes in various populations